
                                   International Journal of Engineering Research   

                                         & Management Technology                                      
 

                              
                           Email: editor@ijermt.org                                                    www.ijermt.org      

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA.   Page 243 
 

  May- 2015   Volume 2,   Issue-3 

              ISSN: 2348-4039 

 

 

"Sharpening Skills..... 
            Serving Nation" 

 

An Advance Technique of Test Case Generation Based on UML 

Diagrams 
 

Mohd. Muneer Siddiqui                                                                                                             Sher Jung Khan       

M.Tech Scholar                                                                                                                          Assistant Professor      

Computer Science and Engineering                                                                               Computer Science and Engineering 

Al-Falah School of Engineering and Technology                      Al-Falah School of Engineering and Technology 

Dhouj,Faridabad,Haryana                       Dhouj,Faridabad,Haryana                          

 

ABSTRACT: 

Software testing strategy is one of the much more required part of software development life cycle (SDLC) for 

successful run of software / computer applications. The collapse of software without accurate testing is very 

large. Hence software testing is required more attention to keep away from the arbitrary failure or crashes of 

software product in SDLC. UML Diagrams are the basic models used to develop test paths from intermediary 

graphs generated automatically using graph coverage techniques. There are many different kinds of coverage 

criteria. For example - control flow, focused on data flow, boundary values, or transition sequences. In this 

paper, we will present new approaches, e.g. to combine coverage criteria and generation of test paths manually 

as well as automatically using tools based on Chinese postman and prefix based algorithms. Testing can be 

divided into two types such as White Box testing and Black Box testing. White box testing is completed 

through detail analysis of program structure where as black box testing deals with specification and design 

document i.e. without any details. Special attractions are needed to look into these qualities while testing is 

found out.UML supports object-oriented technology, which is widely used to describe the analysis and design 

specifications of software progress. UML models are an important source of information for test case design.  

INDEX TERMS:Test data, UML diagrams, Model based testing, Object oriented technology 

INTRODUCTION: 

Software testing technique performs an important role during the design, development and release of software 

product. We have proposed an idea to test software at early stage with the help of Unified Modeling Language 

(UML). The paper summarized in five sections. Section-2 explained the Software Testing. Section-3 

Described the Unified Modeling Language, in section-4 described a Object Oriented Technology and Software 

Testing, section-5 we have mentioned Test Path Generation Algorithm, and the section-6 we have written 

Conclusion and Future Work. Testing is the most important branch of the software development process in 

which we want to verify if a product satisfies the given requirements. It is a important process with many main 

parts. As products become progressively more complex, the process has become very broad and time 

consuming. The subject of test case generation is becoming more and more popular and because test case 

design and execution are time and resource consuming, it is understandable that automatic test case generation 

constitutes an important topic. Test cases can be generated from code, graphs, formal specifications and 

different models. Testing from models are also known as model based testing (MBT). MBT is a testing 

method that usually facilitates the automation of a test case creation using either models or properties. The 

work on this paper is focused on functional model-based testing. Functional testing is related with verifying of 

the system under test (SUT) with a Software Requirement Specification (SRS). A functional test detects a 

failure if the practical and the particular behavior of the SUT do not match. Model-based testing is about using 



International Journal Of Engineering Research & Management Technology 
                
            Email: editor@ijermt.org                                                                               www.ijermt.org 

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA.    Page 244 
 

         ISSN: 2348-4039 

     May- 2015   Volume 2,   Issue-3           

models as specifications. Test cases are frequently generated based on program source code. Another approach 

is to generate test cases from condition developed using formalisms such as UML models. In this approach, 

test cases are developed during study or design stage itself, preferably through the short level design stage. 

Each test path is then changed into a test. If we can generate fewer and shorter test paths, the charge of testing 

can be reduced. 

 SOFTWARE TESTING: 

Testing of software product is the process of exercising a program with fine designed input data with the intent 

of observing failures. In other words, "Testing is the process of executing program with the purpose of finding 

errors". Testing identifies faults, whose exclusion increases the software quality by growing the software’s 

potential reliability. Testing also measures the software quality in terms of its capability for achieving 

accuracy, maintainability, reusability, consistency, usability and testability. 

Different testing techniques reveal different quality aspects of a software system, and there are two major 

categories of testing techniques such as functional testing and structural testing. 

A. FUNCTIONAL TESTING: 

The software program or system under test (SUT) is considered as a "black box testing". The selection of test 

cases for functional testing is based on the requirements or design conditions of the software entity under test. 

Expected results sometimes are called test oracles, which contain requirement/design specifications, hand 

calculated values, and virtual results. An exterior activity of the software entity is the main attraction of 

functional testing. 

B. STRUCTURAL TESTING: 

The software entity is measured as a "white box testing". The choice of test cases is based on the performance 

of the software entity. The main focal point of such test cases is to cause the execution of specific spots in the 

software entity, such as specific statements, program branches or paths. The estimated results are evaluated on 

a set of coverage criteria like branch coverage, path coverage, and data-flow coverage. Interior structure of the 

software entity is the core focus of structural testing. 

UNIFIED MODELING LANGUAGE: 

The UML is a diagram modeling language and used for visualize, construct, specify and document the artifacts 

of a software system. The major area of UML views: Dynamic, Structural and Model Management. Dynamic 

view considered activity diagram, state chart diagram, sequence diagram and collaboration diagram. Structural 

view includes class diagram, use case diagram, deployment diagrams and component diagrams. Model 

management view includes class diagram. Class diagrams - class structure and associations, component 

diagrams- map classes to software unit, deployment diagrams - physical system structure. The behavioral 

elements includes: Use Case Diagrams - functionality as seen by actors, Interaction Diagrams - object message 

sequences, Activity Diagrams - business / software processes, State Diagrams - object state transition behavior 

A. Software Testing Based on UML: 

StefaniaGnesi, propose a proper conformance testing relation for input-enabled transition systems with 

transitions labeled by input/output-pairs (IOLTSs). IOLTSs provide a suitable semantic model for a behavioral 

subset of UMLSCs. They had provided an algorithm which, for a UMLSC specification and the alphabet of 

implementations, generates a test suite. The algorithm is proven exhaustive and sound w.r.t. the conformance 

relation. Ad-Hoc /Random Techniques: These techniques construct regression test suite by selecting randomly 

test cases from unique test suite. Randomly rerunning test cases do not deal with the coverage of affected 

portions and may not find the most severe faults. Retest-All Techniques: These techniques rerun the entire 



International Journal Of Engineering Research & Management Technology 
                
            Email: editor@ijermt.org                                                                               www.ijermt.org 

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA.    Page 245 
 

         ISSN: 2348-4039 

     May- 2015   Volume 2,   Issue-3           

original test suites to ensure that modifications have not regress the software functionality, but this requires 

enough time or resources to rerun the entire test suites. 

WaldemarPires had proposed a fully computerized technique to perform conformance checking of Java 

implementations beside UML class diagrams. In their approach, reused the Design Wizard Java API that 

allows us to write design rules as J Unit tests, i.e., to write them as code directly in the programming language. 

Several experiments on simple scenarios, Simple designs involving classes, associations, inheritance have 

been checked. Advantage of approach lies in the fact that we automatically generate design tests from UML 

class diagrams to Java code that play the dual role of design test and implementation language. UML 

diagrams, specifically class diagrams, are widely used in various software development processes; therefore, 

approach may be used in these processes to check the conformance between design and implementation. Kim 

proposes a method to produce test cases from UML activity diagrams that minimizes the number of test cases 

generated while deriving all practically useful test cases. This method first builds an I/O explicit Activity 

Diagram from an ordinary UML activity diagram and then transforms it to a directed graph, from which test 

cases for the initial activity diagram are derived. 

B. RELATED UML DIAGRAMS: 

UML is a language for visualizing, specifying, constructing and documenting the artifacts of software systems. 

UML provides a selection of diagrams that can be used to current dissimilar views of an object-oriented 

system at different stages of the SDLC. Software testing techniques are based on the UML occupy the source 

of test requirements and coverage criteria from these UML diagrams. These diagrams are Use case, activity, 

sequence, collaboration (also called communication)and interaction diagrams. Sequence and communication 

diagrams give message level facts of a system, which are wanted for Control Flow Analysis (CFA). UML 

diagrams can be divided into three broad categories: structural, behavioral and interaction diagrams. The UML 

structural diagrams are used to model the static aspects of the dissimilar elements in the system, whereas 

behavioral diagrams focus on the dynamic aspects of the system. Our test generation method uses information 

present in two diagrams, which are use case and sequence diagrams. A use case comprises special possible 

sequences of interactions between the computer and the user. Each specific sequence of interactions in au se 

case is called a scenario. A use case is an abstraction of a system response to external inputs. It accomplishes 

job that is very important from user’s point of view. Use case diagrams do not present architectural models, 

user-interface models or workflow models. A sequence diagram shows a set of objects and the sequence of 

messages exchanged between them. In a sequence diagram the importance is on the time ordering of the 

messages. The basic testing practice applied to sequence diagrams; all end-to-end paths should be known and 

exercised. This is equivalent to the requirement to classify and exercise all transitive relations formed by the 

variation of client-sends-message to server. 

C. UML 2.0 SEQUENCE DIAGRAMS: 

Sequence diagrams are important UML artifacts for modeling the behavioral aspects of a system. The 

diagrams are mainly well-suited for object-oriented software, where they represent the flow of control through 

object interactions. A sequence diagram defines a set of interacting objects and these quence of messages 

exchanged between them. The diagram may also include other information about the flow of control through 

the interaction, such as conditions and iteration or state-dependent behavior. Some of the new features are 

illustrated with an example given in Figure. 

 

 

 

 



International Journal Of Engineering Research & Management Technology 
                
            Email: editor@ijermt.org                                                                               www.ijermt.org 

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA.    Page 246 
 

         ISSN: 2348-4039 

     May- 2015   Volume 2,   Issue-3           

 
 

An interaction is a sequence of messages passed between objects to accomplish a particular task. An 

Interaction Occurrence is a symbol that refers to an interaction that is used within another interaction or con 

text. Seqd2 and seqd3 are two interaction occurrences of Seqd1 which refer to sequence diagrams seqd2 

andseqd3. Event Occurrences represent moments in time to which actions are associated. It is the basic 

semantic unit of interactions. Event occurrences are ordered along a lifeline. A message has two types of Event 

Occurrences: Send Event and Receive Event. The Send Event is at the base (source) of the message arrow, 

while Receive Event is at the arrow head of the message arrow.  

OBJECT-ORIENTED TECHNOLOGY AND SOFTWARE TESTING: 

It is broadly received that the object-oriented paradigm will very much increase the software reusability, 

reliability, extendibility and inter-operability. Object-oriented software testing (OOST) is insignificant 

software quality assurance activity to ensure that the benefits of object-oriented (O-O) programming will be 

realized. Object-oriented software testing has to deal with new problems introduced by the object-oriented 

features such as encapsulation, inheritance, polymorphism, and dynamic binding. Below, we talk about 

different type levels of testing associated with object-oriented programs. 

 

A. Intra-method testing: 

Tests designed for individual methods. This is the same to unit testing of straight programs. 

 

B. Inter-method testing: 

Tests are constructed for pairs of method within the same class. In other words, tests are considered to test    

interactions of the methods. 
 

C. Intra-class testing: 

Tests are constructed for a single entire class, usually as sequences of calls to methods inside the class. 

 

D. Inter-class testing: 

It is use to test more than one class at the same time. It is just similar to integration testing. 

 



International Journal Of Engineering Research & Management Technology 
                
            Email: editor@ijermt.org                                                                               www.ijermt.org 

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA.    Page 247 
 

         ISSN: 2348-4039 

     May- 2015   Volume 2,   Issue-3           

The first three testing are of unit testing type, whereas inter-class testing is a type of integration testing. The 

overall approach for object-oriented software testing is equal to the one applied for conventional software 

testing but differs in the approach it uses. 

As classes are integrated into an object-oriented architecture, the system as a whole is tested to ensure that 

errors in requirements are uncovered. 

 

TEST PATH GENERATION ALGORITHM; 

The explanation of the conceptual test case generation algorithm, whose purpose is the creation of a 

conceptual test case with conceptual information about inputs, is presented here. The algorithm starts at a 

definite point in the test model. From that point, the algorithm iterates backward in the state machine to the 

primary configuration with a guided depth-first search process and creates a corresponding path from the 

graph. While moving backward, the algorithm collects all situation and keeps them in a consistent set of 

dataflow information. 

Test Casecreate TestCase(te : Trace Extension) 

{ 

n = target node of the last transition of te; 

TestCasetc = search BackwardsFromNode(n, te); 

if(tc is a valid test case) 

{ 

returntc; 

} 

else { 

return null; 

} 

} 

} 

Test Casesearch Backwards FromNode(n : Node, te : Trace Extension) { 

if(n is initial node and all expressions are satisfied) 

{ // valid 

return test case that contains the current path information; 

} 

TestCasetc = null; 

if(n has a transition t that is part of te) 

{ 

tc = traverseTransition(t, te); 

if(tc != null) 

returntc; 

} 

Else 

{ 

for each incoming transition t of n { 

tc = traverse Transition(t, te); 

if(tc != null) 

returntc; 

} 

} 

return null; 

} 



International Journal Of Engineering Research & Management Technology 
                
            Email: editor@ijermt.org                                                                               www.ijermt.org 

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA.    Page 248 
 

         ISSN: 2348-4039 

     May- 2015   Volume 2,   Issue-3           

 

CONCLUSIONS AND FUTURE WORK; 

Software testing is a process of executing software in a controlled way and where regression testing is an 

expensive but basic maintenance activity performed on modified software to give confidence that changes are 

accurate and do not badly affects other portions of the software. 

Models are an outstanding way to symbolize and understand system behavior, and they give an easy way to 

renew tests to keep pace with applications that are always changing and developing. Testing an application can 

be viewed as traversing a path throughout the graph of the model. Graph theory techniques therefore allow us 

to use the behavioral information stored in models to produce new and useful tests. Tests can be continually 

changing on the same model. Many different types of traversals can meet different requirements of testers. The 

traversal techniques are common and can be re-used on different models. Model-based testing is a black-box 

technique that offers many advantages over traditional testing: Initially, constructing the behavioral models 

can begin early in the development cycle and Secondly, Modeling exposes ambiguities in the requirement and 

design of the software. The model embodies behavioral information that can be re-used in future testing, even 

when the specifications change. Moreover the model is very simple to update than a suite of individual tests. 

And, most importantly, a model furnishes information that can be attached with graph theory techniques to 

create many different test scenarios automatically. Testing benefits from the fact that the actual system is 

brought to execution. Thus, the communication of the actual hardware and the actual software can be 

evaluated. Testing is applicable at different levels of concept and at different stages of the development. With 

our approach UML state machines can be used in the quality assurance to provide as a specification for the 

preferred reactive behavior of the system. It is possible to choose applicable and interesting inputs for a test 

case and to compute the possible accurate explanation for given inputs. They permit to automatically 

evaluating test executions which are in common a difficult and time taking task. Applied approximation makes 

the creation process practical. Here the number of test cases is reduced and they get transition path coverage 

by testing the boundaries. Moreover, our planning is to contain other diagrams of UML to create test cases. In 

future, we will try to optimize test cases and how all other UML diagrams can be combined and used to make 

test cases and also achieve higher coverage. 

REFERENCES: 

1. AynurAbdurazik and Jeff Offutt, “Generating Test Cases from UML Specifications”, 1999. 

2. SupapornKansomkeat and Sanchai Rivepiboon, "Automated- Generating Test Case Using UMLStatechart Diagrams 

",SAICSIT 2003. 

3.  Deng D., et al “Model-based Testing and Maintenance”, Proceedings of the IEEE Sixth (ISMSE’04),pg. 1-8, 2004. 

4. M.S.Lund and K. Stolen, “Deriving Tests from UML 2.0 Sequence Diagrams with neg and assert”, AST’06, May 2006.  

5. F. Basanieri, A. Bertomated ,E. Marchetti, A. Rinoline, G. Lombardi, and G. Nucerga. “An Automated Test Strategy Based 

on UML Diagrams”. InProceeding of the Ericsson Rational User Conference, UpplandsVasby Sweden, October 10-

11,2001, 

6. A.Rountev, S.Kagan and J. Sawin, “Coverage Criteria for testing of objectinteractions in sequence diagrams”, In 

Fundamental Approaches toSoftware Engineering,Edinburgh,Scotland,2-10 April 2005. 
7. Emanuela G, Franciso and Patricia, “Test Case Generation by means ofUML sequence diagrams and Labeled Transition 

Systems,” IEEE ,pp.1292-1297, 2007. 

8. V. Garousi, L. Briand, Y. Labiche. “Control flow analysis of UML 2.0 sequence diagrams”, Technical report.Available 

athttp://www.sce.carleton.ca/squall/pubs/tech_report/TR_SCE-05-09.pdf. 

9. Rountev, A., Volgin, O., Reddoch, M.: Control flow analysis for reverseengineering of sequence diagrams. Technical 

Report OSU-CISRC-3/04-TR 12, Ohio State University, 2004. 

10. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide.Addison-Wesley, 2001. 

11. A. Nayak and D. Samanta, “Automatic Test Data Synthesis using UML Sequence Diagrams”. Journal of Object 

Technology, Vol. 09, No. 2, pp. 75-104, March-April 2010. 

 

 

http://www.sce.carleton.ca/

